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Novel solutions for the s state statistical probability densities of the hydrogen
atom are reported. The new probability densities result from a crucial feature of the
hydrogen eigenfunctions, namely that they are the product of real functions from the
time-independent Schrodinger equation and the complex wave e™(i @n t) from the full
Schrodinger equation. The new statistical probability densities derive from standing
wave patterns in the complex plane not fully appreciated as such generated by the full s
state hydrogen eigenfunctions. The new statistical probability densities determined by
the application of Born’s rule have clear cyclic time dependence exhibiting spherically
symmetric standing wave patterns in conventional coordinate physical space in the
physical volume occupied by the hydrogen atom. This gives the hydrogen atom a
dynamic structure not found in the literature where atomic structure in physical space is
static with no standing waves.

I. Introduction

Max Born created a controversy in 1925! when he published a paper
introducing what has become known as Born’s rule: the probability density of a
quantum entity, such as an electron bound to a proton by their mutual electric
potential energy, is the product of the full complex eigenfunction of the bound
electron multiplied by its complex conjugate. If in Schrodinger’s equation the
imaginary unit i is replaced by — i, complex conjugates are solutions.

Schrodinger took vigorous exception to Born’s rule, in its application to the
eigenfunctions. Einstein rejected it as well opposing probabilistic interpretations.

Despite these negative reactions the physics community adopted Born’s
rule. Apparently Schrodinger imagined that the energy eigenfunctions’ job was
to produce energy eigenvalues, En (n is reserved for E, related eigenfunctions,
and probability densities) and to attach no other physical import to the full
eigenfunctions. Eigenvalues and eigenfunctions with physical content would be
analogous to the solutions of classical resonant systems such as a taut cord.
Fixed at both ends vibrating normal to the cord, the solutions of the equation of
motion describe physical standing waves on the cord as well as their frequencies.
Born’s rule mathematized the indeterminacy that is characteristic of quantum
physics introducing statistical probabilistic descriptions of quantum entities.



The complete hydrogen eigenfunction is a function of complex variables
that includes a single, time dependent complex function W(t) that is a factor in
the complete solution.?® The full hydrogen eigenfunction can be placed on the
complex plane where its time dependence and its statistical complex variable
domain values can be followed for an electron in a bound state. Complete
eigenfunctions produce rotating statistical standing wave patterns on the
complex plane. Born’s rule applied to the s state eigenfunctions results in the s
state time dependent statistical probability densities of the hydrogen atom.

II. The s State Eigenfunctions of the Electron in the Hydrogen Atom

The s states of the hydrogen atom are convenient because they have
minimum content but are general with a particular advantage: the s state energy
eigenvalues En are a convergent infinite sequence of binding energies of the
electron in the hydrogen atom (Bohr’s energies), a significant pattern first
identified indirectly in 1885 by Balmer*. Hydrogen atoms in p, d and f states
have comparable resilience, size, stability and electron binding energies as
determined from atomic spectra. However the s states show a path to limited
generality without the distraction of additional details.

The long lifetime of electron states in the hydrogen atom allows the
formation of the time-independent Schrodinger equation enabling a separation
of the energy eigenfunctions in conventional coordinate physical space from a
second function Wm(t) with complex variables. Wm(t) are the solution of the full
Schrodinger equation. Since the nth stationary s state of hydrogen is sufficiently
stable with a lifetime long compared to its cyclic period T», the Hamiltonian
multiplying the energy eigenfunction Wra(r) can be set equal to the product of
energy eigenvalue En and Wrn(r) resulting in a classic eigenvalue differential
equation system.> The energy eigenfunctions Wra(r) from the solution of this
system are the associated Laguerre functions.® Wra(r) are functions of real
variables, and are spherically symmetric. The spherical symmetry of the electric
potential energy of the hydrogen atom is passed on to Wra(r) by Schrodinger’s
solutions to his time independent equation. As a consequence a thin shell of
radius r and differential thickness dr centered very near the proton will have the
same magnitude of Wrn(r) throughout the thin shell independent of direction due
to the spherical symmetry of the associated Laguerre functions. After Ex and
Wrn(r) are determined, the complex variable function of time ¥1(t) can then be
obtained by solving the full Schrodinger equation where the energy Hamiltonian
is replaced by the product En Wrn(r). Integrating the full Schrodinger equation
then results in Wm(t) = e”(i ont) where En= — (h/21) on. The complete
eigenfunction for the hydrogen atom, Wx(r, t), is then the product of the real,



spherically symmetric energy eigenfunctions ¥rn(r) and the time dependent
complex function Wn(t):

Wi(r, t) = Wrn(r) Ym(t) = Wra(r) e(i ont) = Wra(r) [cOos(on t) + 1 sin(wn t)] (1)

where on > 0.8 A feature of this solution is that function factor W(t) = e”(i on t)
governs the time evolution of Wx(r, t) producing standing wave patterns on the
complex plane, a requirement for repetitive bound states. Eq.(1) is the full
eigenfunction of the s states of the hydrogen atom as found in the literature.?

III. Wx(r, t) On The Complex Plane

Eq.(1) shows that Wx(r, t) is the product of Wrn(r) and Win(t). In classical
physics the function W(t) is known as a unit phasor. Eq.(1) shows that phasors
play a role in quantum physics also. Additionally since Wrn(r) are real functions,
Wh(r, t) is also a phasor: Wh(x, t) is a real function Wrn(r) multiple of the unit
phasor W(t) in the complex plane. The complex unit phasor Wn(t) travels in
anticlockwise motion as a point on the unit circle centered on the origin of the
complex plane. The unit phasor W(t) can be conceptualized alternately as a unit
complex vector with tail at the origin and head at the point e”( i ®n t) on the unit
circle at time t. As time t evolves vector W(t) rotates about the origin of the
complex plane, its tail fixed at the origin and its tip tracing out the unit circle on
the complex plane with angular frequency wn. From Eq(1) ¥(t) drives all points
of Wh(z, t) in circular paths in the complex plane in exact synchrony with ¥rn(t).

Wrn(r) sets the physical scale of the phasor W(r, t). Since the late 1920’s
algebraic expressions of energy eigenfunctions!® Wrna(r) and graphical renditions
of Wrn(r) were produced in the literature. The graphs of the hydrogen energy
eigenfunctions Wrn(r) are found as W¥a(r, 0) in the notation of Eq.(1) above. A
survey of the literature for analytic expressions for the first ten Wrn(r) was found
in Ref. 3, page 243. There are multiple sources of the graphs of Wrn(r) as a
function of r including Ref. 2, page 530, Ref. 12, Fig. 21-3, page 142 and Ref. 13,
Fig.4, page 16. Wra(0) is very close to the proton. Graphs of Wrn(r) include the first
three s states of hydrogen with n values 1, 2, and 3. Wri(r) does not cross the r-
axis but Wra(r) crosses it once and Wrs(r) crosses it twice. Wrn(r) falls rapidly
towards 0 for values of r greater than the physical extent of the hydrogen atom
for all states including n values of 1, 2, and 3. The length of phasor Wu(z, t) in the
complex plane is the value of r where Wra(r) in the limit vanishes beyond the
effective radius of the hydrogen atom for any given s state. Wrn(r) determines
where the tip of vector phasor Wn(t, t) occurs in the complex plane.



The values of Wrn(r) at position r on the phasor Wx(r, t) from r =0 to the tip
of Wh(z, t) are the statistical density of the complex numbers that are the domain
of the full eigenfunction Wx(r, t) at time t. These statistical density patterns are
subject to Born’s rule. Annular bands of domain with amplitudes Wra(r) are
formed between the zeros of Wra(r) as in the figures referenced above where
alternate annular bands of Wrn(r) have opposite sign. The absolute value of the
amplitude maximum for an annular band is roughly mid-way across that
annular band. The motion of phasor Wx(r, t) in its anticlockwise rotation about
the origin of the complex plane results in the various real values Pra(r) at
position r in real physical space multiplying the complex plane coordinates to
form an instantaneous statistical complex domain density values in the complex
plane at all values of r in Wn(r, t) at time t. The standing wave pattern of complex
domain density values sweeping around the complex plane resulting from the
application of the mathematical recipe for that complex domain density from
Wrn(r) is determined and driven by Wx(r, t) in the complex plane.

The development of W(t) above as part of the solution of the full
Schrodinger equation resulting in Eq.(1) commonly skips consideration of a
constant of integration. The general solution for Wm(t) of the full Schrodinger
equation is Wm(t) = e”(i on t + C) where C is the constant of integration. C sets
the angular starting position C = on tc where time tc sets the angle of the
complex unit phasor Wn(t) in the complex plane at t =0. Cis an example of the
kind of information that is often unavailable for quantum systems: it can be an
indeterminate, unknowable magnitude. It is customary to set C and tc to the
value 0 without mention as illustrated above. C=0in Eq.(1). For a classical
phasor, C is set by a knowable boundary condition.’

IV. Finding W(t) Wm(t)* and the Electron Probability Density Wn(r, t) Wn(r, t)*

Eq.(1) are solutions of the Schrodinger equation where Wx(r, t) is the
product of energy eigenfunction Wrn(r), a real function, and the unit phasor
Wm(t), a complex function. Following Born’s rule since the mid-1920’s this result
and its complex conjugate has been used to find the electron probability density,
the product Wn(r, t) Wn(r, t)*. For anticlockwise Wm(t) = e”(i @n t) and for
clockwise complex conjugate W(t)* = e*(—i wn t), ordinary multiplication of
Wn(t) and Wrn(t)* where the exponents add to O results in Wm(t) Wm(t) =1.8 But
Wn(t) = cos(wn t) + isin(on t) and Pm(t)* = cos(on t) — isin(mn t). Complex
number multiplication yields Wa(r, t) Wn(r, t)* = [cos(wn t)]*+ [sin(wn t)]*=1. The
trigonometric expressions for Wm(t) and W(t)* make it clear that there are
infinitely many angles for an infinity of t values on one sweep around the unit
circle where the two unit phasors are rotating position vectors.



With the result directly above the electron is in a state of suspended
animation since there is no time dependence for ¥m(t) Wm(t)* and thus no time
dependence for the product (1, t) Wn(r, t)* as well. Eq.(1) is contradicted: the
electron’s motion is determined by the time dependence of W(t) which
produces standing wave patterns in the complex plane. The statistical
probability density of the electron must be time dependent. The electron in a
hydrogen atom is moving: a differential operator in the time-independent
Hamiltonian for the hydrogen atom represents the kinetic energy of the electron.
There is no knowable trajectory for the electron, but it moves with changing
kinetic and electric potential energy in the spherically symmetric electric field of
the proton.

The determination of the electron probability of the bound electron in the
hydrogen atom is the energy eigenfunction ¥ra(r) from Schrodinger’s time
independent equation is a real function, not a complex function. This fact
determines how the application of Born’s rule is executed to form the product
Wh(r, t) Wn(r, t)*. Born’s rule requires Wn(r, t) Wn(r, t)* to be real and positive.
Since Wrn(r) are real, Born’s rule then requires that the product Wm(t) Pm(t)* must
be real and positive confining that product to the real axis on the complex plane.
Thus W (t) Wm(t)* is restricted to values on the real axis of the complex plane
anywhere between and including the complex plane coordinates (1, 0 i) and
(-1, 01i). In the initial trial considered here C is assigned the usual default value
0 for each unit phasor. Unit phasors W(t) and ¥n(t)* begin rotation with tips at
the same point (1, 0i) at t =0. The rotation of the two unit phasors is
coordinated by their shared time evolution due to their having the same
magnitude of angular speed mn. At any given time t, the real coordinates of the
unit phasors on the real axis are at the same point on the real axis and the time
elapsed by the phasors in motion is identical. At time t the values of Wn(t) are
cos(mn t) and of Wm(t)* are cos[—(mn t)] = cos(wn t). Thus W(t) Ym(t)* =
[cos(mn t)]? = {[cos(2 @n t)] + 1}/2.

In the analysis above the starting point was chosen at point (1, 0 i) as the
default choice. In that case both unit phasors started their cycle at the same point
on the real axis of the complex plane. But there are infinitely many possible
starting points for the two phasors consistent with quantum indeterminacy. Any
line parallel to the imaginary axis that intersects the unit circle on the complex
plane will provide a single point ((1, 0 i) or (-1, 0 i)) or a pair of separate starting
points for the two phasors. In addition the two phasors have two distinct ways
to occupy each of those pairs of two points separately. These paired point cases
can be mathematized by including C or tc defined above in Sec. III: W(t) =
cos(mn t + C) = cos[wn(t + tc)] and Wrn(t)* = cos[—(wn t + tc)] = cos[(wn t + tc)]:



Yn(t) Wm(t)* = {cos[mn (t + tc)]}> = {cos[2 on (t + tc)] + 1}/2. (2)

Eq.(2) replaces product Wn(t) W(t)* =1 found in the literature. The original
multiplication of the exponentials is 1 for all t. The solution 1 is not a general
solution but is a periodic solution. Invoking Born’s rule leads to the general
solution [cos(wn[(t + tc)]>= {[cos 2 on (t + tc) + 1]/2} named here the product
density time modulation factor (PDTMF). tc varies from 0 to Tn randomly for a
particular hydrogen atom introducing a vast quantum indeterminacy for bound states
of the hydrogen atom. The rest of this report will take tc = 0 to keep the analysis
minimal as before where quantum indeterminacy applies exactly as above. With
tc =0 Born’s product Wn(r, t) Pu(r, t)* from Eq.(1) and Eq.(2) is [\Wra(r)]? Prn(t)
Wrn(t)*:

Wa(r, t) Pa(r, t)* = [Pra(r)]? {[cos(2 on t) + 1]/2.} 3)

Eq.(3) is the electron statistical probability density at any point in the
infinitesimally thin shell of radius r centered near the proton of the hydrogen
atom as discussed above. Since [\Wrn(r)]? are real positive functions, Eq.(3)
consists entirely of real, positive functions greater than or equal to zero. Eq.(2)
varies between 0 and 1. Eq.(3) is a positive real function in coordinate physical
space. The energy eigenfunction squared, [\Wra(r)]%, modulates the product

Wh(r, t) Wn(r, t)* over the range of r from 0 to the maximum identical value of r at
the tip of Wn(r, t) or of Wn(r, t)*. Thus the zeros of statistical probability density
of the electron in the hydrogen atom in Eq.(3) fall in the same spatial positions as
those of the associated Laguerre functions Wra(r) in Pn(r, t).

V. The Dynamic Structure of the Hydrogen Atom

Wh(r, t) Wn(r, t)* from Eq.(3) is the statistical probability density at any
point in the shell determined by [Wra(r)]? at time t. The spherical symmetry of
Wrn(r) results in a statistical probability density PDn(r, t) for the entire spherical
shell! of area 4 © r>as being 4 1 12 Wn(r, t) Pa(, t)*:

PDa(r, t) = 4 7 12 [Pra(r)]2 {[coS(2 oon )] + 1}]/2. (4)

The statistical probability density PDn(r, t) in Eq.(4) is the statistical
electron volume occupation density.’* PDnx(r, t) waxes and wanes due to the
PDTMF (Eq.(2)), [cos(2 on t) + 1]/2. What is waxing and waning is the statistical
probability enclosed in the volume in space defined by the square of energy
eigenfunction [Wrn(r)]>. At the instant the probability density of PDx(x, t) is 0, the



electron is very near the proton at the origin. PDx(r, t) waxes and wanes with
twice the explicit frequency on in Eq.(1) starting from the full value of Wra(r)? to 0
twice for each cycle of cos(2 on t) in time interval Tn. The doubling of frequency
to 2 on is due to the squaring of Wrn(r) during the formation Eq.(3) from Born’s
product. Every other annular band of Wrn(r) in Wa(r, t) or in Wa(r, t)* is negative.
Thus regions where Wrn(r) < 0 become [Wrn(r)]? > 0 when forming Born’s product.
PDn(r, t) retains its unchanging shape as the statistical probability densities wax
and wane: the boundaries defined by [Wra(r)]* from Eq.(3) remain fixed. This
evolving system is similar to the latest experiments that build the statistical
diffraction patterns for a beam of electrons beyond a double slit barrier one
electron at a time. The quantum world is noisy, but Born’s rule finds the
structure. Eq.(4) is the statistical dynamic structure of the hydrogen atom.

The maximum probability densities, PDx(t, 0), can be found as artistic
renderings in texts!2131415 and by searching the internet for hydrogen atom
probability density. PDn(r, t) exhibits a statistical central sphere of probability
density governed by [Wri(r)]* centered at the origin for n=1. For n=2 thereis a
central sphere and a thick shell farther out with density governed by [Wra(r)]>
For n = 3 there is a central sphere and two separate thick shells farther out with
density governed by [Wrs(r)]2. These results are consistent with the complex
statistical domain of Wn(r, t) being in the form of annular patterns. The r-axis
crossings have the same value of r for Wa(r, t) as the 0 minima for PDx(r, t). Using
Born’s rule forming Eq.(3) extends spherical symmetry to the statistical
probability density, PDx(r, t) , in Eq(4). Since the atomic volume defined by
[Wra(r)]? for s states has spherical symmetry, continuous radiation from the
electron is excluded providing for a stable atom.

PDn(r, t) shows the physical extent of space occupied by an electron as it
covers its domain as a statistical physical standing wave. Quantum physics
generates this dynamic structure of the hydrogen atom. The statistical perpetual
motion oscillatory dynamics of the standing waves in coordinate physical space
of bound electron for the duration of the s state creates the world we see. This is
an entirely different way of being than anything we are accustomed to observing
in the classical world. Electrons with inappropriate eigenfunctions straying from
the outside world into the space defined by PDn(r, t) would be pummeled by a
standing wave of frequency of 2 o by some fraction of the charge of the
hydrogen atom’s electron. The deeper the penetration by the foreign electron, the
bigger the electron charge fraction opposing the invasion provided by PDn(r, t).

It is clear from Schrédinger’s response to Born’s rule that his
eigenfunctions were not conceived nor expected by him to produce statistical
probability distributions. Schrodinger apparently also saw no reason to place
Wh(r, t) on the complex plane to see what he had even though this is an essential



exercise in quantum physics. The hydrogen atom with its unfamiliar complete
complex energy eigenfunctions projected onto the complex plane got lost in the
shuffle as well as did the perpetual oscillatory motion of the statistical standing
wave patterns of the electron in physical space for any given bound state of the
electron in the hydrogen atom.

The signal role of the obscure associated Laguerre functions in the
structure of the hydrogen atom is extraordinary. The patterns generated by these
functions in the hydrogen atom extend throughout the periodic table!®. The
match of energy eigenvalues of the hydrogen atom with hydrogen spectra clinch
the associated Laguerre functions as the energy eigenfunctions with their
accompanying spherical symmetry. The finding that these functions applied to
hydrogen through Schrédinger’s equation is evidence of Schrodinger’s deep
expertise applying the mathematics of his time. And Schrodinger’s equation
works well for both bound states and running states of beams of quantum
entities as well as other quantum systems. But the prize was hydrogen
eigenvalues and atomic stability. Schrodinger opened up a vast exploration of
nuclear physics, condensed matter physics, chemistry and more including the
cosmic microwave background radiation from free hydrogen atoms in the early
cooling universe. On the other hand Born made a significant discovery leading
to deeper understanding, Schrodinger’s objections not withstanding.
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