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 Novel solutions for the s state statistical probability densities of the hydrogen 
atom are reported.  The new probability densities result from a crucial feature of the 
hydrogen eigenfunctions, namely that they are the product of real functions from the 
time-independent Schrödinger equation and the complex wave e^(i ωn t) from the full 
Schrödinger equation.  The new statistical probability densities derive from standing 
wave patterns in the complex plane not fully appreciated as such generated by the full s 
state hydrogen eigenfunctions.  The new statistical probability densities determined by 
the application of Born’s rule have clear cyclic time dependence exhibiting spherically 
symmetric standing wave patterns in conventional coordinate physical space in the 
physical volume occupied by the hydrogen atom.  This gives the hydrogen atom a 
dynamic structure not found in the literature where atomic structure in physical space is 
static with no standing waves. 
 
I.  Introduction 
 
 Max Born created a controversy in 19251 when he published a paper 
introducing what has become known as Born’s rule:  the probability density of a 
quantum entity, such as an electron bound to a proton by their mutual electric 
potential energy, is the product of the full complex eigenfunction of the bound 
electron multiplied by its complex conjugate.  If in Schrödinger’s equation the 
imaginary unit i is replaced by – i, complex conjugates are solutions.  
Schrödinger took vigorous exception to Born’s rule, in its application to the 
eigenfunctions.  Einstein rejected it as well opposing probabilistic interpretations. 
   Despite these negative reactions the physics community adopted Born’s 
rule.  Apparently Schrödinger imagined that the energy eigenfunctions’ job was 
to produce energy eigenvalues, En (n is reserved for E, related eigenfunctions, 
and probability densities) and to attach no other physical import to the full 
eigenfunctions.  Eigenvalues and eigenfunctions with physical content would be 
analogous to the solutions of classical resonant systems such as a taut cord.  
Fixed at both ends vibrating normal to the cord, the solutions of the equation of 
motion describe physical standing waves on the cord as well as their frequencies.  
Born’s rule mathematized the indeterminacy that is characteristic of quantum 
physics introducing statistical probabilistic descriptions of quantum entities. 
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 The complete hydrogen eigenfunction is a function of complex variables 
that includes a single, time dependent complex function ΨTn(t) that is a factor in 
the complete solution.2,3  The full hydrogen eigenfunction can be placed on the 
complex plane where its time dependence and its statistical complex variable 
domain values can be followed for an electron in a bound state.  Complete 
eigenfunctions produce rotating statistical standing wave patterns on the 
complex plane.  Born’s rule applied to the s state eigenfunctions results in the s 
state time dependent statistical probability densities of the hydrogen atom. 
 
II.  The s State Eigenfunctions of the Electron in the Hydrogen Atom 
 
 The s states of the hydrogen atom are convenient because they have 
minimum content but are general with a particular advantage: the s state energy 
eigenvalues En are a convergent infinite sequence of binding energies of the 
electron in the hydrogen atom (Bohr’s energies), a significant pattern first 
identified indirectly in 1885 by Balmer4.  Hydrogen atoms in p, d and f states 
have comparable resilience, size, stability and electron binding energies as 
determined from atomic spectra.  However the s states show a path to limited 
generality without the distraction of additional details. 
 The long lifetime of electron states in the hydrogen atom allows the 
formation of the time-independent Schrödinger equation enabling a separation 
of the energy eigenfunctions in conventional coordinate physical space from a 
second function ΨTn(t) with complex variables.  ΨTn(t) are the solution of the full 
Schrödinger equation.  Since the nth stationary s state of hydrogen is sufficiently 
stable with a lifetime long compared to its cyclic period Tn , the Hamiltonian 
multiplying the energy eigenfunction ΨRn(r) can be set equal to the product of 
energy eigenvalue En and ΨRn(r) resulting in a classic eigenvalue differential 
equation system.5   The energy eigenfunctions ΨRn(r) from the solution of this 
system are the associated Laguerre functions.6  ΨRn(r) are functions of real 
variables, and are spherically symmetric.  The spherical symmetry of the electric 
potential energy of the hydrogen atom is passed on to ΨRn(r) by Schrödinger’s 
solutions to his time independent equation.  As a consequence a thin shell of 
radius r and differential thickness dr centered very near the proton will have the 
same magnitude of ΨRn(r) throughout the thin shell independent of direction due 
to the spherical symmetry of the associated Laguerre functions.  After En and 
ΨRn(r) are determined, the complex variable function of time ΨTn(t) can then be 
obtained by solving the full Schrödinger equation where the energy Hamiltonian 
is replaced by the product En ΨRn(r).  Integrating the full Schrödinger equation 
then results in ΨTn(t)  =   e^(i ωn t) where En =  – (h/2π) ωn.  The complete 
eigenfunction for the hydrogen atom, Ψn(r, t), is then the product of the real, 
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spherically symmetric energy eigenfunctions ΨRn(r) and the time dependent 
complex function ΨTn(t): 
 
   Ψn(r, t)  =   ΨRn(r) ΨTn(t)  = ΨRn(r) e^(i ωn t)  =  ΨRn(r) [cos(ωn t) + i sin(ωn t)]         (1)     

       
where ωn > 0.8  A feature of this solution is that function factor ΨTn(t) =  e^(i ωn t) 
governs the time evolution of Ψn(r, t) producing standing wave patterns on the 
complex plane, a requirement for repetitive bound states.  Eq.(1) is the full 
eigenfunction of the s states of the hydrogen atom as found in the literature.8 
 
III.  Ψn(r, t) On The Complex Plane 
 
 Eq.(1) shows that Ψn(r, t) is the product of ΨRn(r) and ΨTn(t).  In classical 
physics the function ΨTn(t) is known as a unit phasor.9  Eq.(1) shows that phasors  
play a role in quantum physics also.  Additionally since ΨRn(r) are real functions, 
Ψn(r, t) is also a phasor:  Ψn(r, t) is a real function ΨRn(r) multiple of the unit 
phasor ΨTn(t) in the complex plane.  The complex unit phasor ΨTn(t) travels in 
anticlockwise motion as a point on the unit circle centered on the origin of the 
complex plane.  The unit phasor ΨTn(t) can be conceptualized alternately as a unit 
complex vector with tail at the origin and head at the point e^( i ωn t) on the unit 
circle at time t.  As time t evolves vector ΨTn(t) rotates about the origin of the 
complex plane, its tail fixed at the origin and its tip tracing out the unit circle on 
the complex plane with angular frequency ωn.  From Eq(1) ΨTn(t) drives all points 
of Ψn(r, t) in circular paths in the complex plane in exact synchrony with ΨTn(t). 
 ΨRn(r) sets the physical scale of the phasor Ψn(r, t).  Since the late 1920’s 
algebraic expressions of energy eigenfunctions10 ΨRn(r) and graphical renditions 
of ΨRn(r) were produced in the literature.  The graphs of the hydrogen energy 
eigenfunctions ΨRn(r) are found as Ψn(r, 0) in the notation of Eq.(1) above.  A 
survey of the literature for analytic expressions for the first ten ΨRn(r) was found 
in Ref. 3, page 243.  There are multiple sources of the graphs of ΨRn(r) as a 
function of r including Ref. 2, page 530, Ref. 12, Fig. 21-3, page 142 and Ref. 13, 
Fig.4, page 16.  ΨRn(0) is very close to the proton.  Graphs of ΨRn(r) include the first 
three s states of hydrogen with n values 1, 2, and 3.  ΨR1(r) does not cross the r-
axis but ΨR2(r) crosses it once and ΨR3(r) crosses it twice.  ΨRn(r) falls rapidly 
towards 0 for values of r greater than the physical extent of the hydrogen atom 
for all states including n values of 1, 2, and 3.  The length of phasor Ψn(r, t) in the 
complex plane is the value of r where ΨRn(r) in the limit vanishes beyond the 
effective radius of the hydrogen atom for any given s state.  ΨRn(r) determines 
where the tip of vector phasor Ψn(r, t) occurs in the complex plane. 
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 The values of ΨRn(r) at position r on the phasor Ψn(r, t) from r = 0 to the tip 
of Ψn(r, t) are the statistical density of the complex numbers that are the domain 
of the full eigenfunction Ψn(r, t) at time t.  These statistical density patterns are 
subject to Born’s rule.  Annular bands of domain with amplitudes ΨRn(r) are 
formed between the zeros of ΨRn(r) as in the figures referenced above where 
alternate annular bands of ΨRn(r) have opposite sign.  The absolute value of the 
amplitude maximum for an annular band is roughly mid-way across that 
annular band.  The motion of phasor Ψn(r, t) in its anticlockwise rotation about 
the origin of the complex plane results in the various real values ΨRn(r) at 
position r in real physical space multiplying the complex plane coordinates to 
form an instantaneous statistical complex domain density values in the complex 
plane at all values of r in Ψn(r, t) at time t.  The standing wave pattern of complex 
domain density values sweeping around the complex plane resulting from the 
application of the mathematical recipe for that complex domain density from 
ΨRn(r) is determined and driven by Ψn(r, t) in the complex plane. 
 The development of ΨTn(t) above as part of the solution of the full 
Schrödinger equation resulting in Eq.(1) commonly skips consideration of a 
constant of integration.  The general solution for ΨTn(t) of the full Schrödinger 
equation is ΨTn(t) =  e^(i ωn t + C) where C is the constant of integration.  C sets 
the angular starting position C  =  ωn tC where time tC sets the angle of the 
complex unit phasor ΨTn(t) in the complex plane at t = 0.  C is an example of the 
kind of information that is often unavailable for quantum systems:  it can be an 
indeterminate, unknowable magnitude.  It is customary to set C and tC to the 
value 0 without mention as illustrated above.  C = 0 in Eq.(1).  For a classical 
phasor , C is set by a knowable boundary condition.9  
 
IV.  Finding ΨTn(t) ΨTn(t)* and the Electron Probability Density Ψn(r, t) Ψn(r, t)* 
  
 Eq.(1) are solutions of the Schrödinger equation where Ψn(r, t) is the 
product of energy eigenfunction ΨRn(r), a real function, and the unit phasor 
ΨTn(t), a complex function.  Following Born’s rule since the mid-1920’s this result 
and its complex conjugate has been used to find the electron probability density, 
the product Ψn(r, t) Ψn(r, t)*.  For anticlockwise ΨTn(t) =  e^(i ωn t) and for 
clockwise complex conjugate ΨTn(t)* = e^(–i ωn t), ordinary multiplication of 
ΨTn(t) and ΨTn(t)* where the exponents add to 0 results in ΨTn(t) ΨTn(t)  = 1.8  But 
ΨTn(t) = cos(ωn t) +  i sin(ωn t) and ΨTn(t)* = cos(ωn t) –  i sin(ωn t).  Complex 
number multiplication yields Ψn(r, t) Ψn(r, t)* =  [cos(ωn t)]2 +  [sin(ωn t)]2 = 1.  The 
trigonometric expressions for ΨTn(t) and ΨTn(t)* make it clear that there are  
infinitely many angles for an infinity of t values on one sweep around the unit 
circle where the two unit phasors are rotating position vectors. 
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 With the result directly above the electron is in a state of suspended 
animation since there is no time dependence for ΨTn(t) ΨTn(t)* and thus no time 
dependence for the product    Ψn(r, t) Ψn(r, t)* as well.  Eq.(1) is contradicted:  the 
electron’s motion is determined by the time dependence of ΨTn(t) which 
produces standing wave patterns in the complex plane.  The statistical 
probability density of the electron must be time dependent.  The electron in a 
hydrogen atom is moving:  a differential operator in the time-independent 
Hamiltonian for the hydrogen atom represents the kinetic energy of the electron.  
There is no knowable trajectory for the electron, but it moves with changing 
kinetic and electric potential energy in the spherically symmetric electric field of 
the proton. 
 The determination of the electron probability of the bound electron in the 
hydrogen atom is the energy eigenfunction ΨRn(r) from Schrödinger’s time 
independent equation is a real function, not a complex function.  This fact 
determines how the application of Born’s rule is executed to form the product 
Ψn(r, t) Ψn(r, t)*.  Born’s rule requires Ψn(r, t) Ψn(r, t)* to be real and positive.  
Since ΨRn(r) are real, Born’s rule then requires that the product ΨTn(t) ΨTn(t)* must 
be real and positive confining that product to the real axis on the complex plane.  
Thus ΨTn(t) ΨTn(t)* is restricted to values on the real axis of the complex plane 
anywhere between and including the complex plane coordinates (1, 0 i) and       
(– 1, 0 i).  In the initial trial considered here C is assigned the usual default value 
0 for each unit phasor.  Unit phasors ΨTn(t) and ΨTn(t)* begin rotation with tips at 
the same point (1, 0 i) at t = 0.   The rotation of the two unit phasors is 
coordinated by their shared time evolution due to their having the same 
magnitude of angular speed ωn.  At any given time t, the real coordinates of the 
unit phasors on the real axis are at the same point on the real axis and the time 
elapsed by the phasors in motion is identical.  At time t the values of ΨTn(t) are 
cos(ωn t) and of ΨTn(t)* are cos[–(ωn t)] = cos(ωn t).  Thus   ΨTn(t)  ΨTn(t)*  =     
[cos(ωn t)]2  =  {[cos(2 ωn t)]  +  1}/2.                    
 In the analysis above the starting point was chosen at point (1, 0 i) as the 
default choice.  In that case both unit phasors started their cycle at the same point 
on the real axis of the complex plane.  But there are infinitely many possible 
starting points for the two phasors consistent with quantum indeterminacy.  Any 
line parallel to the imaginary axis that intersects the unit circle on the complex 
plane will provide a single point ((1, 0 i) or (–1, 0 i)) or a pair of separate starting 
points for the two phasors.  In addition the two phasors have two distinct ways 
to occupy each of those pairs of two points separately.  These paired point cases 
can be mathematized by including C or tC defined above in Sec. III:  ΨTn(t) =                  
cos(ωn t + C) = cos[ωn(t + tC)] and ΨTn(t)* = cos[–(ωn t + tC)] = cos[(ωn t + tC)]:  
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                  ΨTn(t)  ΨTn(t)*  =  {cos[ωn (t + tC)]}2  =  {cos[2 ωn (t + tC)]  +  1}/2.             (2) 
           
Eq.(2) replaces product ΨTn(t) ΨTn(t)*  = 1 found in the literature.  The original 
multiplication of the exponentials is 1 for all t.  The solution 1 is not a general 
solution but is a periodic solution.  Invoking Born’s rule leads to the general 
solution [cos(ωn[(t + tC)]2 =  {[cos 2 ωn (t + tC)  +  1]/2} named here the product 
density time modulation factor (PDTMF).  tC varies from 0 to Tn randomly for a 
particular hydrogen atom introducing a vast quantum indeterminacy for bound states 
of the hydrogen atom.  The rest of this report will take tC = 0 to keep the analysis 
minimal as before where quantum indeterminacy applies exactly as above.  With 
tC = 0 Born’s product Ψn(r, t) Ψn(r, t)* from Eq.(1) and Eq.(2) is [ΨRn(r)]2 ΨTn(t) 
ΨTn(t)*: 
 
                      Ψn(r, t) Ψn(r, t)*  =  [ΨRn(r)]2 {[cos(2 ωn t)  +  1]/2.}                                 (3) 
 
Eq.(3) is the electron statistical probability density at any point in the 
infinitesimally thin shell of radius r centered near the proton of the hydrogen 
atom as discussed above.  Since [ΨRn(r)]2 are real positive functions, Eq.(3) 
consists entirely of real, positive functions greater than or equal to zero.  Eq.(2) 
varies between 0 and 1.  Eq.(3) is a positive real function in coordinate physical 
space.  The energy eigenfunction squared, [ΨRn(r)]2, modulates the product    
Ψn(r, t) Ψn(r, t)* over the range of r from 0 to the maximum identical value of r at 
the tip of Ψn(r, t) or of Ψn(r, t)*.   Thus the zeros of statistical probability density 
of the electron in the hydrogen atom in Eq.(3) fall in the same spatial positions as 
those of the associated Laguerre functions ΨRn(r) in Ψn(r, t). 
 
V.  The Dynamic Structure of the Hydrogen Atom 
  
   Ψn(r, t) Ψn(r, t)* from Eq.(3) is the statistical probability density at any  
point in the shell determined by [ΨRn(r)]2 at time t.  The spherical symmetry of 
ΨRn(r) results in a statistical probability density PDn(r, t) for the entire spherical 
shell11 of area 4 π r2 as being 4 π r2 Ψn(r, t) Ψn(r, t)*: 

 
                           PDn(r, t)  =  4 π r2 [ΨRn(r)]2 {[cos(2 ωn t)] + 1}]/2.                               (4)  
 
 The statistical probability density PDn(r, t) in Eq.(4) is the statistical  
electron volume occupation density.13  PDn(r, t) waxes and wanes due to the 
PDTMF (Eq.(2)),  [cos(2 ωn t) + 1]/2.  What is waxing and waning is the statistical 
probability enclosed in the volume in space defined by the square of energy 
eigenfunction [ΨRn(r)]2.  At the instant the probability density of PDn(r, t) is 0, the 
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electron is very near the proton at the origin.  PDn(r, t) waxes and wanes with 
twice the explicit frequency ωn in Eq.(1) starting from the full value of ΨRn(r)2 to 0 
twice for each cycle of cos(2 ωn t) in time interval Tn.  The doubling of frequency 
to 2 ωn is due to the squaring of ΨRn(r) during the formation Εq.(3) from Born’s 
product.  Every other annular band of ΨRn(r) in Ψn(r, t) or in Ψn(r, t)* is negative.   
Thus regions where ΨRn(r) < 0 become [ΨRn(r)]2 > 0 when forming Born’s product.  
PDn(r, t) retains its unchanging shape as the statistical probability densities wax 
and wane:  the boundaries defined by [ΨRn(r)]2  from Eq.(3) remain fixed.  This 
evolving system is similar to the latest experiments that build the statistical 
diffraction patterns for a beam of electrons beyond a double slit barrier one 
electron at a time.  The quantum world is noisy, but Born’s rule finds the 
structure.  Eq.(4) is the statistical dynamic structure of the hydrogen atom. 
 The maximum probability densities, PDn(r, 0), can be found as artistic 
renderings in texts12,13,14,15 and by searching the internet for hydrogen atom 
probability density.  PDn(r, t) exhibits a statistical central sphere of probability 
density governed by [ΨR1(r)]2 centered at the origin for n = 1.  For n = 2 there is a 
central sphere and a thick shell farther out with density governed by [ΨR2(r)]2.  
For n = 3 there is a central sphere and two separate thick shells farther out with 
density governed by [ΨR3(r)]2.  These results are consistent with the complex 
statistical domain of Ψn(r, t) being in the form of annular patterns.  The r-axis 
crossings have the same value of r for Ψn(r, t) as the 0 minima for PDn(r, t).  Using 
Born’s rule forming Eq.(3) extends spherical symmetry to the statistical 
probability density, PDn(r, t) , in Eq(4).  Since the atomic volume defined by 
[ΨRn(r)]2 for s states has spherical symmetry, continuous radiation from the 
electron is excluded providing for a stable atom. 
 PDn(r, t) shows the physical extent of space occupied by an electron as it 
covers its domain as a statistical physical standing wave.  Quantum physics 
generates this dynamic structure of the hydrogen atom.  The statistical perpetual 
motion oscillatory dynamics of the standing waves in coordinate physical space 
of bound electron for the duration of the s state creates the world we see.  This is 
an entirely different way of being than anything we are accustomed to observing 
in the classical world.  Electrons with inappropriate eigenfunctions straying from 
the outside world into the space defined by PDn(r, t) would be pummeled by a 
standing wave of frequency of 2 ωn by some fraction of the charge of the 
hydrogen atom’s electron. The deeper the penetration by the foreign electron, the 
bigger the electron charge fraction opposing the invasion provided by PDn(r, t). 
 It is clear from Schrödinger’s response to Born’s rule that his 
eigenfunctions were not conceived nor expected by him to produce statistical 
probability distributions.  Schrödinger apparently also saw no reason to place 
Ψn(r, t) on the complex plane to see what he had even though this is an essential 
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exercise in quantum physics.  The hydrogen atom with its unfamiliar complete 
complex energy eigenfunctions projected onto the complex plane got lost in the 
shuffle as well as did the perpetual oscillatory motion of the statistical standing 
wave patterns of the electron in physical space for any given bound state of the 
electron in the hydrogen atom.   
 The signal role of the obscure associated Laguerre functions in the 
structure of the hydrogen atom is extraordinary.  The patterns generated by these 
functions in the hydrogen atom extend throughout the periodic table16.  The 
match of energy eigenvalues of the hydrogen atom with hydrogen spectra clinch 
the associated Laguerre functions as the energy eigenfunctions with their 
accompanying spherical symmetry.  The finding that these functions applied to 
hydrogen through Schrödinger’s equation is evidence of Schrödinger’s deep 
expertise applying the mathematics of his time.  And Schrödinger’s equation 
works well for both bound states and running states of beams of quantum 
entities as well as other quantum systems.  But the prize was hydrogen 
eigenvalues and atomic stability.  Schrödinger opened up a vast exploration of 
nuclear physics, condensed matter physics, chemistry and more including the 
cosmic microwave background radiation from free hydrogen atoms in the early 
cooling universe.  On the other hand Born made a significant discovery leading 
to deeper understanding, Schrödinger’s objections not withstanding. 
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